Inheritance

Lecture 16

Inheritance

* Itis a form of software reuse in wOrh pr Creates a
class that absorbs an exist.ingﬁass’s data and behavior and

enhances them with new capabilities.

* New class (derived) can inherit the members of existing class
(base)

Example

class base
{int x;
public: inty;

base(int i=0,int j=0) : x(i),y(j) { }
void display() { cout<<"\n X : "<<x<<" Y : "<<y; }};
class derived : public base
{int z;
public:
derived(int s) : z(s) { }
void d() { display(); cout<<"\n Z : "<<z; } };
void main()
{ derived d(5); d.d(); d.display(); }

Inheritance

Direct base class — from which derived is directly inherited
from base class

Indirect base class — inherited from two or more levels

Single inheritance — one base class

Multiple inheritance — multiple base classes

Example

CommunityMember
Employee Student Alumnus (single inheritance)
/ \
Faculty Staff (single mheritance)
/ \
Administrator Teacher (single inheritance)

~.

AdministratorTeacher (multiple inheritance)

Access specifiers

* Derived class can access the non-private members of its base
class

* Though derived class can change the private members
through non-private member functions of base class

[s-a relationship

* Is-a relationship represent inheritance

* Object of derived class also can be treated as an object of the
base class

protected access specifier

A base class protected members can be accessed
* within the body of that base class
* by members and friends of that base class

* and by members and friends of any classes derived from that
base class

Access specifiers

Base T¥pe of inheritfance
class
member public protected private
access inheritance inheritance inheritance
specifier
publ1ic in derived class. protected in derived class.| private in derived class.
U Can be accessed directly by | Can be accessed directly by | Can be accessed directly
E any non-static member all non-static member by all non-static
= functions, friend functions and friend member functions and
functions and non-member functions. friend functions.
functions.
protected in derived class.| protected in derived class.| private in derived class.
EJ Can be accessed directly by | Can be accessed directly by | Can be accessed directly
5 all non-static member all non-static member by all non-static
= functions and friend functions and friend member functions and
5 functions. functions. friend functions.
Hidden in derived class. Hidden in derived class. Hidden in derived class.
Can be accessed by non- Can be accessed by non- Can be accessed by non-
g static member functions static member functions static member
§ and friend functions and friend functions functions and friend
i through publicor through publicor functions through publ1ic
= protected member func- protected member func- or protected member
tions of the base class. tions of the base class. functions of the base class.

class base

{

private: int x;
protected: int y;
public: int z;

base() { x=0; y=0; z=0;}
Iy

void main()
{ base b; derived1 d1i;

derived2 d2: derived3 d3;

cout<<b.z;
cout<<dl.z;
/lcout<<d2.z; ERROR
/lcout<<d3.z; ERROR

d1.display(); d2.display();

d3.display();
}

class derivedl : public base
{ public:
void display/()

{ cout<<"\n Public inheritance
Y||<<y<<|| Z"<<Z, }}’

class derived2 : protected base
{ public:
void display()

{ cout<<"\n Public inheritance
Yi'<<y<<" Z:"<<z;)

class derived3 : private base
{ public:
void display()

{ cout<<"\n Public inheritance
Y:||<<y<<u Z.||<<Z; } };

Assignment

* Explain various types of Inheritance.

